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Abstract

The investigation of observed borehole temperatures has proved to be a valuable tool
for the reconstruction of ground surface temperature histories. However, there are still
many open questions concerning the significance and accuracy of the reconstructions
from these data. In particular, the temperature signal of the warming after the Last5

Glacial Maximum is still present in borehole temperature profiles. It is shown here that
this signal also influences the relatively shallow boreholes used in current paleoclimate
inversions to estimate temperature changes in the last centuries by producing errors
in the determination of the steady state geothermal gradient. However, the impact on
estimates of past temperature changes is weaker. For deeper boreholes, the curva-10

ture of the long-term signal is significant. A correction based on simple assumptions
about glacial-interglacial temperature changes shows promising results, improving the
extraction of millennial scale signals. The same procedure may help when comparing
observed borehole temperature profiles with the results from numerical climate mod-
els.15

1 Introduction

In steady-state thermal conditions at the surface, the subsurface geothermal gradient,
neglecting heat production, can be approximated by a linear profile (e.g. Pollack and
Huang, 2000). If perturbations in surface temperatures occur, they propagate to the
subsurface and deform the geothermal gradient. Such deviations are registered by20

borehole temperature profiles (BTPs) and have been successfully used to reconstruct
ground surface temperature histories (GSTHs), providing estimates of preindustrial-
to-present temperature change that complement those of other proxy reconstructions
(e.g. Jansen et al., 2007). Nevertheless, there is still a number of open questions
concerning possible biases in borehole based reconstructions (e.g. Smerdon et al.,25

2006; Wilhelm et al., 2005; Verdoya et al., 2007; Mottaghy and Rath, 2006), making
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the choice of boreholes, the careful evaluation of their setup, and a valid treatment of
the data a considerable task for the interpreter.

One of such uncertainty sources concerns the potential effect of long term surface
perturbations like the warming from the Last Glacial Maximum (LGM) to the Holocene.
Though reliable conclusions about the last 25 000 years can only be drawn using sub-5

surface temperatures from the rare deep boreholes with depths of 2000 m and more
(e.g. Chouinard and Mareschal, 2009), at shallower depths of less than 1000 m, the
post-LGM warming may also leave an imprint through smooth changes of the temper-
ature gradient. Within this depth domain, there is an abundance of BTPs which could
be a valuable source of information on the last millennium and late Holocene. The10

extent to which such perturbations can affect the interpretation of past temperature
inversion from BTPs within this range of depths is unclear.

Since the times of Birch (1948), corrections for paleoclimate effects have been pro-
posed and applied when estimating heat flow densities (e.g. Vasseur and Lucazeau,
1983; Majorowicz and Wybraniec, 2010), though this is not yet the standard proce-15

dure (Davies and Davies, 2010). Surprisingly, the role of postglacial warming in the
reconstruction of past climates has not yet been studied systematically, though its
effect was identified as a source of error when inverting very shallow borehole tem-
perature profiles many times (amongst others Majorowicz, 2004; Hartmann and Rath,
2005; Beltrami et al., 2011). In this paper we show that the analysis of its impact is20

even more important when interpreting deeper boreholes. Important implications may
be expected not only for derived temperatures, stored heat, and heat flow estimations,
but also when comparing observed BTPs and model simulations (see González-Rouco
et al., 2009, and references therein). Therefore, it would be highly desirable to estimate
the influence of postglacial warming on BTPs of variable depths within the first km of25

the subsurface and, if possible, formulate approaches for dealing with this situation.
This work analyzes these issues by performing Monte-Carlo simulations with a one-

dimensional forward modeling code under plausible glacial-interglacial surface temper-
ature forcing conditions described in Sect. 2. This allows to illustrate the effects of
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postglacial warming on shallow BTPs and to develop simple corrections that mitigate
their induced errors in Sect. 3. In Apendices A to C we give further information on
the numerical procedure which we used to produce the Monte Carlo (MC) results, the
inverse procedure employed, and some additional figures.

2 Monte-Carlo simulations5

In order to give a quantitative estimate of the effect of the postglacial temperature rise,
Monte-Carlo (MC) simulations were performed. For these we employed a simple nu-
merical one-dimensional forward modeling code (Mottaghy and Rath, 2006; Rath and
Mottaghy, 2007), which is described in more detail in Appendix A. To represent the
past temperature variations, a simplified upper temperature boundary was used. It is10

based on a sequence of step functions as shown in Fig. 1. The parameters sampled
in the MC calculations are the times of temperature changes t1 and t2, and the corre-
sponding temperature deviations ∆T1 and ∆T2, respectively. ∆T1 may be described as
the temperature rise between glacial and Holocene conditions, while ∆T2 represents
the difference between Holocene and the long-term Quaternary mean. We assumed15

parameter distributions for location and amplitude of both step functions, as well as for
the petrophysical properties,the thermal conductivity and the volumetric heat capacity,
λm and (ρc)m of the rock, respectively. The general shape of the step functions shown
in Fig. 1 was qualitatively motivated by estimations like those of GRIP, EPICA and Vos-
tok (e.g. NGRIP Working Group, 2004; Jouzel et al., 2007). The values are within the20

uncertainties of present knowledge concerning glacial to interglacial land temperature
change, and embrace scenarios of less cooling like those plausibly suffered at lower
latitudes as well as larger temperature changes registered in proxy data and simulated
by models for northern latitudes (Jansen et al., 2007; Otto-Bliesner et al., 2009, and
references therein). Some large temperature changes over land (e.g. Jost et al., 2005)25

were assigned low probabilities. The choice of GSTH also would not include sites from
the very high latitudes, where the conditions at the base of the ice sheets may cause
LGM ground surface temperatures significantly higher than during the Holocene.
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The boundary conditions of Fig. 1 do not intend to be exhaustive in including all
potential past climate trajectories, but to provide a plausible framework of temperature
change over typical borehole locations that can be used to demonstrate their effect
on BTPs. Obviously, if better information is available on the regional climate conditions
during the last glacial cycle, the probable signature of GST changes can be constrained5

accordingly.
The resulting six parameters were assumed to be independently distributed following

a Normal distribution N (µ̂,σ̂). The values assumed for the means µ̂ and standard
deviations σ̂ are given in Appendix A. This set of parameters was randomly sampled,
producing an ensemble of 10 000 runs of the forward modeling code.10

Figure 2 shows the difference of the resulting BTPs with respect to the reference,
i.e. a constant GSTH of Ts =6 ◦C implying steady-state conditions. The results indicate
that the temperature profiles differ considerably from the reference by the influence of
the earlier temperature changes. The largest deviations in temperature occur at depths
between 1000 m and 1500 m. Clearly, the true steady state condition can not easily be15

estimated from the temperature and thermal properties alone for a given shallow (say,
<500 m) borehole, as it is often done in practice by assuming that the quasi-linear
bottom part of the profile represents the geothermal gradient. This may be concluded
from the observation that the vertical temperature gradient approaches its true value
only at depths near 2000 m. It follows, that under most probable conditions, results of20

GSTH inversions could be influenced by this transient effect mistaken for a steady-state
component. Additionally, this implies that differences in log depth may falsely translate
into different geothermal gradients, and in consequence, GST histories.

3 A simple correction approach

Boreholes of less than 1000 m depth allow targeting changes of the last several25

1000 yrs. It is highly desirable, however, to make better use of the information content
of these shallow BTPs, as they are abundant in many areas, while deep boreholes are
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very rare. Therefore a simple procedure is proposed, by which shorter BTPs may be
corrected for the influence of the glacial-interglacial transition with just an approximate
knowledge of the regional long-term paleo-temperatures.

A GSTH based on the major features of the Holocene warming scenario with addi-
tional temperature variations during the last 500 yrs (grey line in Fig. 3) was used to5

generate synthetic BTPs of different depth between 250 m and 1250 m. This scenario
includes a Little Ice Age (LIA) like minimum around ca. 1700 and a warming of about
half a degree in the last century. After being artificially perturbed with noise, these syn-
thetic observations were interpreted using a regularized linear inversion scheme (see
Beltrami and Mareschal, 1991; Mareschal and Beltrami, 1992, SM). Results show a10

large variability among the inverted BTPs (Fig. 3), particularly before the LIA minimum
where deviations to the reference GSTH can reach about half a degree at the beginning
of the millennium. This discrepancy mainly arises because of the post-glacial warming
that fakes true temperature changes in the last millennium. This can then be corrected
by subtracting the response corresponding to the long term component of the GSTH,15

which is the original GSTH with a constant temperature assumed from 12 000 years
BP onward (see Fig. 1, red line). This leads to much more consistent results for all
inverted profiles for all of the millennium (Fig. 3).

Concerning the use of shallow (say, <500 m) boreholes, it has to be noted, that sin-
gle shallow boreholes usually still lead to significant short term reconstructions that20

reproduce the changes in the last centuries, because the disturbing temperature signal
is nearly linear, and can thus easily be represented by an erroneous steady state com-
ponent (i.e. the geothermal gradient) of the model. This can easily be seen in Fig. 4,
where estimated background heat flow estimated from BTPs of increasing depths is
shown for a realistic profile including the post LGM warming (red), and its corrected25

version (green) as well as for a case including only changes in the last millennium
(green; excluding post LGM warming), and for the steady state (gray). The background
geothermal gradients derived from the raw profile (i.e. including LGM effects) at shallow
depths are systematically too low, while the ones derived from the corrected values are
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very similar to the true ones. They also agree with the results for synthetic BTPs esti-
mated from a reference GSTH, which is constant in time with exception of the millennial
period.

For this reasons, increasing the depth into the domain of changing vertical gradi-
ent will not generally improve results. In this case, the effect of the Holocene warm-5

ing may not be treated as a simple offset in basal heat flow density, but will produce
an erroneous signal in the whole profile, and therefore in the reconstructed surface
temperatures. If BTPs of different depths are compared, or even interpreted jointly,
inconsistencies and corresponding errors in the results will arise.

Clearly, the method as applied here makes use of our prior knowledge of long term10

GSTH, and to less extent on rock properties and basal heat flow as far as nonlinearity
has to be considered. However, it turns out that the results can also be improved by
using approximate information. Sensitivity tests (some given in Appendix C) indicate
that even inaccurate long-term models improve inversion results considerably.

Note that for this case involving an abrupt change in temperature, all inverted15

GSTHs, whether corrected or not, underestimate the temperature change in the last
1000 yrs. This is due to the existence of many GSTH leading to a similar fit of the
observations. The inverse problem is ill-posed (Hansen, 1998, 2010), and can only
be solved by regularization. The particular method used here, is based on a damped
singular value decomposition. As many other commonly employed methods, it will20

lead to smooth solutions which will not reproduce abrupt changes like the one we have
chosen for the numerical experiment. If the corresponding regularization parameter is
chosen properly (see Appendix B), the effect of postglacial warming would not lead to
a general overestimation of variation. Such overestimation would have explained the
comparatively cold temperatures of the borehole reconstruction results presented by25

Jansen et al. (2007); the present numerical experiments, however, indicate that this
hypothesis is not valid.
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Additionally, it should be noted that this simple reduction approach is not the only
possible one when reconstrucing past surface temperature changes. In the case of
Bayesian-type reconstruction algorithms (see, e.g. Tarantola, 2005), the earlier surface
temperature changes could be introduced as a prior model in the case of a gaussian
maximum aposteriori estimate, or included into the prior probabilty distribution in the5

more general case.

4 Impact for model-observation comparison

A similar problem may result when comparing the output of AOGCM simulations with
field data (Stevens et al., 2008). AOGCM simulations on millennial scale usually start
with initial conditions assuming steady state conditions in the subsurface. Due to the10

long temperature memory of the subsurface, this is not the case.
When comparing AOGCM outputs with borehole data, the standard procedure with

BTPs is estimating perturbations from a reference geothermal gradient, and assum-
ing equilibrium heat flow in the deeper part of the observed BTP. These perturbation
profiles (often called reduced temperatures) are then compared with the results of us-15

ing modeled surface air temperature (SAT) as top boundary condition for the thermal
subsurface model.

Here, the same situation applies as with inversion. In the case of shallow boreholes,
a reasonable background heat flow (including the steady-state and long period compo-
nent) may be estimated by an appropriate procedure, e.g. the inverse approach used20

above above, depending on prior site knowledge. For deeper boreholes, the curvature
of LGM-influenced BTPs is significant. Therefore the correction approach explained in
Sect. 3 should improve results considerably. It must be re-iterated, that this approach
depends on assumed prior knowledge on long-term climate, implying that care has
to be taken when choosing this GSTH. This is particularly important when comparing25

BTPs to simulation outputs implies moving from global scale to regional studies.
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5 Conclusions

From the simple modeling studies presented above a few conclusions may be drawn.
First of all, the signature of the LGM and Holocene warming can not be neglected
even in shallow boreholes. In this case, however, the nearly linear behavior of the
LGM-derived signal component can be emulated by an erroneous background equilib-5

rium heat flow. In the case of deeper BTPs, carrying informations from times before
the LIA, the curvature of the perturbing signal becomes important, and differences in
depth translate to variations in inferred paleo-temperatures. In the same way, reduced
temperatures calculated for comparison with GCM output may be biased. A first order
correction, however, seems possible by means of approximate knowledge on prior de-10

velopment of surface temperatures. The power of this approach has of course to be
investigated in the field, which remains a task for the future.

Appendix A

Supplementary information on the MC simulation15

The one-dimensional, purely conductive heat equation in a porous medium can be
written as:

∂
∂z

(
λe

∂T
∂z

)
+h= (ρc)e

∂T
∂t

, (A1)

where λ is thermal conductivity (Wm−1K−1), (ρc) is the volumetric heat capacity
(JK−1m−3), and h is volumetric heat production (Wm−3). The subscript e marks ef-20

fective parameters of the porous medium, and can be interpreted as properties of
a two-phase mixture between solid rock and fluid-filled pore space. For the paleocli-
mate application we have in mind, Eq. (A1) usually is solved with appropriate boundary
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conditions, namely fixed but time-dependent temperature T = T (t) at the top, z= z0, and
fixed heat flow density qb at the base at z= zb.

Equation (A1) is understood to allow all coefficients, boundaries, and sources, to be
nonlinearly dependent on temperature. As we are aiming at deep boreholes recording
the history of ground surface temperature for some 10 000 years, we have to extend the5

numerical model to depths of several 1000 m for numerical reasons and temperatures
of up to 200 ◦C accordingly. This requires taking the temperature dependencies of the
thermophysical properties into account, possibly including phase change by freezing
and thawing of pore water. Details of theory, implementation, and the validation of the
approach can be found in Mottaghy and Rath (2006) and Rath and Mottaghy (2007).10

In contrast, if aiming at millennial scale events as the little ice age in Europe, analytical
models (e.g. Beltrami and Mareschal, 1991; Mareschal and Beltrami, 1992, used in the
inverse experiments described below) assuming constant properties are often sufficient
for the interpretation of BTPs, implying additivity of solutions.

The parameter choices for the MC simulations are given in Table 1. While the rock15

parameters λm and (ρc)m are plausible for the most common crustal rocks. To com-
plete the model set up, we have assumed a moderate porosity of φ= 0.1, a recent
surface temperature of Ts =6 ◦C, and a heat flow density of 50 mW m−2.

The software to produce the results presented in the main article may be downloaded
from the first author’s web page (http://palma.fis.ucm.es/∼volker/MC web.tar.gz).20

Appendix B

Additional information on the inverse numerical experiments

For the numerical experiments on GSTH inversion, we used a commonly employed pro-
cedure (Beltrami and Mareschal, 1991; Mareschal and Beltrami, 1992; Beltrami et al.,25

1995; Clauser and Mareschal, 1995), where a simple analytical forward solution is
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used, and the subsurface is assumed to be homogeneous:

T (z,t)= T0+
q0z

λ
− Az2

2λ
+Tt(z,t) (B1)

The first three terms represent the steady-state component, defined by the heat flow
density at the surface q0, the equilibrium ground surface temperature T0, the constant
thermal conductivity λ, and heat production rate A of the subsurface, which in most5

cases can safely be neglected. If the GST history is parameterized by a series of
temperature steps TG

j at times tj before present (t = 0), the remaining transient tem-
perature term Tt(z,t) at time t and depth z is given by (Carslaw and Jaeger, 1959):

Tt(z)=
N∑
j=1

TG
j

erfc

 z

2
√
κtj

−erfc

 z

2
√
κtj−1


 (B2)

If Tt(z) = Tt(zi ) is given at discrete depths i , a corresponding linear inverse problem10

for the TG
j , T0, and q0 can be formulated. In the cases shown, 20 temperature steps

logarithmically equispaced between 10 yrs b.p. and 1000 yrs b.p. were used. To deal
with the inherent ill-posedness of this problem (Hansen, 2010), it is solved using a trun-
cated singular value decomposition approach as described by Mareschal and Beltrami
(1992). In order to keep the numerical experiment free of the ambiguities when choos-15

ing the necessary regularization parameter, a constant ε was determined beforehand
by the L-curve method (Hansen, 1998, 2010). For all depths considered here, a value
of ε=0.3 seemed appropriate. Individual determination of the regularization parameter
for each temperature profile does not produce fundamentaly different results.

To eludicate the generally smoothing behavior of this algorithm, a simple numerical20

experiment assuming a GSTH of constant value before the LIA is presented here. For
the numerical experiments we used the GSTHs shown in Fig. 5, random perturbation
were added to the original simulated data, assuming a normal distribution N (µ̂,σ̂)
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with µ̂= 0 and standard deviations σ̂ = 0.1 K. Noise correlation was produced using a
rectangular linear filter of length 5.

The results for different choices of the regularization parameter ε are given in Fig. 6a.
The overall smoothing behavior of this regularized inversion is evident. Additionally, the
L-curve for this experiment is shown in Fig. 6b. While at small regularization parame-5

ters (e.g. ε= 0.03, blue), the inverted GST shows overshoots, and a behavior strongly
dependent on noise in the observations, higher values (e.g. ε=0.3) will lead to stable,
but oversmoothing behavior. This is well reflected in the L-curve (Hansen, 2010) on
the right, which has its corner somewhere between ε= 0.4 and ε= 0.1. As common
in ill-posed inverse problems, a trade-off between data fit and stability of results can be10

obtained near the corner of the L-curve.
The MATLAB™ scripts used for the inverse experiments presented in the main article

and here may be downloaded from the first author’s web page (http://palma.fis.ucm.es/
∼volker/GSTHinvA web.tar.gz).

Appendix C15

Senstivity studies for the correction approach

To give examples, Fig. 7 shows results obtained by varying the prior GSTH calculating
the correction applied to the raw data. In the first case a ±2.5 K deviation of the minimal
temperatures at the LGM were used, assumed to be lower than the recent GST by a20

∆T of −5 K. In the second, the time of postglacial warming (12 Kyrs b.p.) is modified
by ±2 kyrs. The differences between the inferred GST histories are much smaller than
in the case of uncorrected observations. Similar results are obtained for the other
parameters. These result indicate that even incomplete prior knowledge on paleo-
temperatures may improve consistency and realism of the inversion results.25
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Table 1. Parameters used for the Monte-Carlo simulations in this study. They were assumed
to be independently and normally distributed. λm and (ρc)m are the rock matrix properties.

λm (ρc)m ∆T1 ∆t1 ∆T2 ∆t2
( W

mK ) ( MJ
kgK ) (K) (kyr) (K) (kyr)

µ̂ 2.5 2.0 5.5 14 4 80
σ̂ 0.5 0.5 2 2 2 10
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Fig. 1. GSTH forcing used for the calculations presented in this study. Also shown are the
parameters and their variations used for the Monte Carlo investigations. 2σ̂ boundaries are
marked by grey shades. The general shape of the GSTH for this numerical experiment is
motivated by the EPICA ice core reconstructions (Jouzel et al., 2007). Note that the base
model is constant since the postglacial temperature rise.
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Fig. 2. Results of the Monte Carlo study. Normalized histogram densities of the temperature
deviation calculated for the long-term models with reprect to steady-state conditions (a), and
their vertical derivative (b) as functions of depth. The integral along the x axis is equal to 1 for
all depth, as the densities are normalized by the number of runs (10 000).
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Fig. 3. Using prior knowledge for correction of shallow borehole temperature profiles. (a) Inver-
sion of BTP of different lengths derived from a synthetic GSTH (shown in grey), which shows
constant temperatures since the postglacial temperature rise. (b) Boreholes were corrected by
subtracting the response to this prior GSTH. The shallowest BTP (250 m, dark blue) is too short
to resolve the LIA-like structure, and thus the results show only very weak effects, independent
of whether input data are raw or corrected.
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Fig. 4. Background heat flow density values obtained as a result from inverting original syn-
thetic (red), synthetic data without LGM (blue), and corrected data (green). Obviously, in the
first case the estimated heat flow density is the superposition of the nearly linear equilibrium
component, and the effect of post-glacial warming. Shown in grey is the true constant value.
The remaining deviation from the true one is present in the blue and green curve. It depends
on the observations, their errors, and the choice of the regularization parameter.
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Fig. 6. Inversions of borehole temperature profiles for a fixed depth (500 m), where a GSTH
of constant value before the LIA is assumed. Results for different values of the regularization
paramter are shown in (a). The corresponding L-curve (Hansen, 2010) is shown in panel (b).
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Fig. 7. Sensitivities of corrections with respect to assumed amplitude of LGM temperatures.
Inverted BHT from a BTP with a length of 500 m. Data were corrected with different paleo-
temperature scenarios, with maximal temperature steps of ∆T15±2.5 K (a), and the corre-
sponding step times t112±2 kyrs (right).
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